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Introduction

This paper seeks to use Markov chain Monte Carlo (MCMC) to construct
auxiliary random variables, which are used within a (stochastic) variational
inference (VI) framework to perform approximate posterior inference.

The hope is that this fusion can combine the fast, and explicit optimization
of VI with the (asymptotically) exact and flexible nature of MCMC.
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Notation

The paper uses notation which is typical for ML and SMC, which is
ambiguous from a probabalistic point of view: the letter p denotes the true
distribution of ‘everything’ and it is the argument which dictates which
distribution we look at.

Latent variables of interest are z , prior is p(z).
Observed data x , likelihood is p(x |z), marginal likelihood is p(x), true
posterior is p(z |x).
Letter qθ(z |x) denotes family of approximate variational posteriors,
which are parameterized by θ.
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Variational Inference

We wish to approximate the true posterior p(z |x) using some ‘nice’ family
of distributions

{qθ(z |x) : θ ∈ Θ}.

E.g. Gaussian approximation: qθ(z |x) could all be Gaussians with
mean/covariance based on data x , parameterized by θ.

To find a good approximation, we try to maximise the evidence lower
bound (ELBO) L:

L = L(θ) := Eq[log p(x , z)−log qθ(z |x)] = log p(x)−DKL{qθ(z |x)||p(z |x)}.

This is maximised over θ using standard optimization methods.
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Variational Inference Cartoon
https://www.researchgate.net/figure/
Left-illustration-of-variational-inference-Right-difference-between-MAP-and_
fig3_333678861

Figure 1: https://www.researchgate.net/figure/
Left-illustration-of-variational-inference-Right-difference-between-MAP-and_
fig3_333678861
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VI overview

Have an explicit objective L.
Generally fast.
Conceptually simple deterministic scheme.

Very parametric: performance depends crucially on choosing a good
family qθ(z |x).
Always inexact (no matter how long you run for).

Andi Wang (NN Reading group) MCMC and VI 28 April 2020 6 / 12



VI overview

Have an explicit objective L.
Generally fast.
Conceptually simple deterministic scheme.

Very parametric: performance depends crucially on choosing a good
family qθ(z |x).
Always inexact (no matter how long you run for).

Andi Wang (NN Reading group) MCMC and VI 28 April 2020 6 / 12



MCMC

Construct a Markov chain (zt)
∞
t=1, with transition kernel q(zt |zt−1, x),

whose invariant distribution coincides with the posterior p(z |x).

Then (under conditions) for a large value of T , zT is (approximately)
distributed according to true posterior p(z |x).
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MCMC overview

Asymptotically exact.
‘Less parametric’ than VI (but need to choose kernel sensibly).

Issues of burn-in; no longer an explicit objective.
Stochastic algorithm.
Can be slow to converge.
It can be difficult to tune the parameters within the algorithm.
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VI with auxiliary random variables

Vanilla VI is a deterministic optimization scheme for approximating a
posterior distribution.

But it is also possible include auxiliary random variables. Suppose we have
obtained from MCMC a chain z0, . . . , zT−1, zT :

qθ(z0, . . . , zT−1, zT |x) = qθ(z0|x)
T∏
t=1

qθ(zt |zt−1, x).

We will take as our marginal posterior approximation

qθ(zT |x) =

∫
qθ(z0, . . . , zT−1, zT |x)dz0 . . . dzT−1.

In other words, we see y := (z0, . . . , zT−1) as a collection of auxiliary
random variables. (Rich family of approximate posteriors!)
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New objective

Recall y := (z0, . . . , zT−1). We obtain then a new variational lower bound
to optimize:

Laux := L − Eq(zT |x)[DKL{q(y |zT , x)||r(y |zT , x)}],

where r(y |zT , x) is an auxiliary inference distribution which you can choose
freely.

In this work they consider r(y |zT , x) which also has a Markov structure:

r(z0, . . . , zT−1|x , zT ) =
T∏
t=1

rt(zt−1|x , zt).

Then with this choice, we have

Laux = Eq[log(p(x , zT )/q(z0, x))] +
T∑
t=1

log[rt(zt−1|x , zt)/qt(zt |x , zt−1)].
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New Objective ctd

With auxiliary random variables, now have to perform stochastic gradient
variational inference.

It is not difficult to obtain unbiased estimates L of the lower bound Laux
(Algorithm 1), and so its derivative is an unbiased estimate of the
derivative of the lower bound*.

Thus can use this in a stochastic optimization algorithm (Algorithm 2).
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Some things learned...

VI can handle auxiliary random variables. The algorithm becomes
stochastic optimization, but this is still possible.
These auxiliary random variables can come from MCMC.
MCMC itself can provide a rich family of approximate posterior
distributions.
VI can be used in a sense to ‘tune’ HMC.
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