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Overview

✦ Background
✦ Restricted Boltzmann Machines
✦ Deep (Restricted) Boltzmann Machines



Why should we care?

🤑🤑

• Generative model

• Feature extracting technique

• State-of-the-art collaborative filtering



Boltzmann machines

✦ Graphical model

✦ , unsupervised

✦ Stochastic neural 
network

✦ Energy-based

p(v)

Special case of graphical model, where the goal is to learn a probability distribution form a dataset, this being 
unsupervised.




Background- Ising model

H(σ) = − ∑
⟨i j⟩

Jijσiσj − μ∑
j

hjσj

Z = ∑
σ

e−βH(σ)P(σ) =
e−βH(σ)

Z

σ = (σk)ΛSpin configuration
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Restricted Boltzmann Machine

Hidden Layer

Input Layer
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Restricted Boltzmann Machine
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p(v; θ) =
∑h exp(−E(v, h; θ))

Z(θ)Probability of 
a configuration
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exp(−ℱ(v))
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Conditional distributions

p(hj = 1 |v) = σ(bj +
m

∑
i=1
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(Approximate) Learning

Maximise likelihood:

∂ log p(vn; θ)
∂θ

= 𝔼[−
∂E(v, h; θ)

∂θ
|v = vn] − 𝔼[−

∂E(v, h; θ)
∂θ

]

Positive statistic Negative statistic

∂ log p(vn)
∂wij

= 𝔼[hivj |v = vn] − 𝔼[hivj]
problem

σ(Wvn + bi)
Although exact maximum likelihood 
learning in RBM’s is still intractable, 
learning can be carried out efficiently 
using Contrastive Divergence



Persistent Contrastive Divergence

𝔼[hivj] ≈ ∑
m

hmivmj (v∞
m , h∞

m )(vp
m, hp

m)

• Start with training data
• Run for a few steps (1-5)
• Update , use end state 

as initialisation
θ

“Fantasy” particles
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Generative model

Random samples from the training set, and samples generated from one deep Boltzmann machines 
by running the Gibbs sampler for 100,000 steps

Fig. 4 shows samples generated from the two DBM’s by randomly 
initializing all binary states and running the Gibbs sampler for 100,000 
steps. Certainly, all samples look like the real handwritten digits.



Model Evaluation

Metrics?

On the Quantitative Analysis of Deep Belief 
Networks, Salakhutdinov et al, 2008

✦ Visual inspection
✦ Reconstruction error
✦ Likelihood



Going DEEP

✦ Stacked RBMs
✦ Complex representations



What changes?

✦ Learning is harder (Positive statistic)

Greedy layerwise pretraining+Variational Learning

∂ log p(vn; θ)
∂θ

= 𝔼[−
∂E(v, h; θ)

∂θ
|v = vn] − 𝔼[−

∂E(v, h; θ)
∂θ

]



Results



Benchmark

p(xm |θ) =
m

∑
k=1

πk∏
j

B(xmj |μjk)



Conclusion

✦ Useful Representations
✦ Hard to train 
✦ Probability only known up to Z



L2 in high dimensional data



Learning algorithm



Mean Field


