

Normalizing Flows

Mauro Camara Escudero

School of Mathematics, University of Bristol

- 1. Background
- 2. Normalizing Flows
- 3. Universality and Duality
- 4. Popular Flows

Normalizing Flows at a Glance

- What are they? Normalizing Flows define expressive probability distributions that we can sample and evaluate.
- **How do we learn them?** We specify transformations in advance and learn their parameters.
- **How?** Transforming a simple density into a more complex one via a chain of invertible transformations.
- How expressive are they? If the target distribution $p_{\mathbf{z}}^*(\mathbf{z})$ satisfies $p_{\mathbf{z}}^*(\mathbf{z}) > 0$ for all \mathbf{z} and $\mathbb{P}(z'_i \leq z_i \mid \mathbf{z}_{<i})$ are differentiable w.r.t. $(z_i, \mathbf{z}_{<i})$, then it can be represented by starting with an initial uniform distribution, and the Jacobian of the transformation is lower triangular.
- What is the challenge? Finding transformations with a lower-triangular Jacobian that do not restrict the expressive power of the distribution.

Background

Variational Auto-Encoders Review

- Recall VAEs are used for latent posterior inference, parameter estimation, and generative modelling.
- Optimize Evidence Lower Bound (ELBO) using SGD.

$$\mathcal{L}_{\theta,\phi}(\mathbf{x}) = \mathbb{E}_{q_{\phi}} \left[\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log q_{\phi}(\mathbf{z} \mid \mathbf{x}) \right]$$

• This requires computing gradients with respect to ϕ

$$\nabla_{\boldsymbol{\phi}} \mathcal{L}_{\theta, \boldsymbol{\phi}}(\mathbf{x}) = \nabla_{\boldsymbol{\phi}} \mathbb{E}_{q_{\boldsymbol{\phi}}}\left[\cdot\right]$$

• To use Monte Carlo estimates we reparametrized q_{ϕ} to exchange ∇_{ϕ} and \mathbb{E} . We call this the reparametrization trick.

$$\begin{array}{ll} \boldsymbol{\epsilon} \sim p(\boldsymbol{\epsilon}) & \text{independent of } \boldsymbol{\phi} \\ \mathbf{z} = g_{\boldsymbol{\phi}}(\boldsymbol{\epsilon}, \mathbf{x}) & \text{deterministic} \end{array} \end{array} \implies \quad \mathbf{z} \sim q_{\boldsymbol{\phi}}(\mathbf{z} \mid \mathbf{x})$$

Reparametrization Trick: Diffeomorphism of a Simple Distribution

• Given a random variable ϵ with distribution $p_{\epsilon}(\epsilon)$, a transformed random variable $\mathbf{z} = \mathbf{g}(\epsilon)$ has distribution

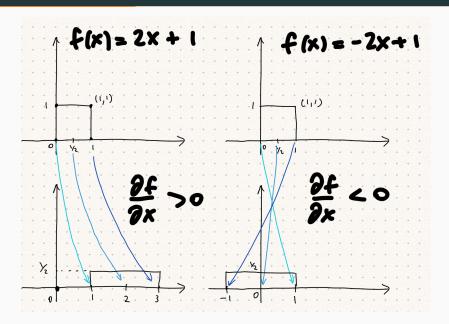
$$\begin{split} p_{\mathbf{z}}(\mathbf{z}) &= p_{\boldsymbol{\epsilon}}(\mathbf{g}^{-1}(\mathbf{z})) |\text{det } J_{\mathbf{g}}(\mathbf{g}^{-1}(\mathbf{z}))|^{-1} \\ &= p_{\boldsymbol{\epsilon}}(\mathbf{g}^{-1}(\mathbf{z})) |\text{det } J_{\mathbf{g}^{-1}}(\mathbf{z})| \end{split}$$

where the Jacobian is given by

$$J_{\mathbf{g}^{-1}}(\mathbf{z}) = \begin{pmatrix} \frac{\partial g_1^{-1}}{\partial \epsilon_1} & \cdots & \frac{\partial g_D^{-1}}{\partial \epsilon_D} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_D^{-1}}{\partial \epsilon_1} & \cdots & \frac{\partial g_D^{-1}}{\partial \epsilon_D} \end{pmatrix}$$

• For this to work we need **g** to be a diffeomorphism: g^{-1} exists and both g and g^{-1} are differentiable.

Change of Variable, Change of Volume



Normalizing Flows

Composition of Diffeomorphisms

- Normalizing Flows generalize the reparametrization trick so that the resulting distribution $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ is more expressive.
- Suppose we have K diffeomorphisms g_k. These are composable and their composition is a diffeomorphism.
- Define $\epsilon_k = \mathbf{g}_k(\epsilon_{k-1})$ for $k = 1, \dots, K$ with $\epsilon_0 = \epsilon$ and $\epsilon_K = \mathbf{z}$.
- Then their composition $\mathbf{g} = \mathbf{g}_K \circ \cdots \circ \mathbf{g}_1$ is invertible

$$\mathbf{z} = (\mathbf{g}_K \circ \cdots \circ \mathbf{g}_1)(\boldsymbol{\epsilon}) \quad \text{with} \quad \boldsymbol{\epsilon} = (\mathbf{g}_1^{-1} \circ \cdots \mathbf{g}_K^{-1})(\mathbf{z})$$

• And differentiable

$$\det J_{\mathbf{g}_K \circ \cdots \circ \mathbf{g}_1}(\boldsymbol{\epsilon}) = \prod_{k=1}^K \det J_{\mathbf{g}_k}(\boldsymbol{\epsilon}_{k-1})$$

Normalizing Flows: Sampling and Evaluating

- Idea: By composing simple diffeomorphisms g_k together, we can transform a base distribution p_{ϵ} into a more complex one p_z .
- Sampling:
 - Sample from base distribution: $\boldsymbol{\epsilon}^{(1)}, \dots, \boldsymbol{\epsilon}^{(N)} \stackrel{\text{i.i.d.}}{\sim} p_{\boldsymbol{\epsilon}}(\boldsymbol{\epsilon})$
 - + Feed through the flow: $\mathbf{z}^{(i)} = \mathbf{g}(\boldsymbol{\epsilon}^{(i)})$ for $i = 1, \dots, N$
- Evaluation: Using $\epsilon_k = \mathbf{g}_{k+1}^{-1} \circ \cdots \circ \mathbf{g}_K^{-1}(\mathbf{z})$

$$\ln p_{\mathbf{z}}(\mathbf{z}) = \ln p_{\boldsymbol{\epsilon}}(\mathbf{g}^{-1}(\mathbf{z})) + \sum_{k=1}^{K} \ln \left| \det J_{\mathbf{g}_{k}^{-1}}(\boldsymbol{\epsilon}_{k}) \right|$$

- Sampling efficiency depends on $\sim p_{\epsilon}$ and $\mathbf{g}(\cdot)$.
- Evaluating efficiency depends on $\mathbf{g}^{-1}(\cdot)$, $p_{\boldsymbol{\epsilon}}(\cdot)$ and log-det-jacobian.

- Depending on application one has to decide whether sampling or evaluating efficiency is more important, as this is a trade-off.
- One aims to design Normalizing Flows optimizing sampling or evaluating efficiency. This means choosing which of the operations above are efficient.
- By choosing to model g⁻¹ rather than g as normalizing flow, one obtains an "inverse" flow, with opposite properties (see MAF and IAF).

Universality and Duality

Universality

By starting with a base distribution that is uniformly distributed in $(0, 1)^D$, we can represent any distribution satisfying:

- $p_{\mathbf{z}}(\mathbf{z}) > 0$ for all \mathbf{z}
- $\mathbb{P}(z'_i \leq z_i \mid \mathbf{z}_{< i})$ are differentiable wrt $(z_i, \mathbf{z}_{< i})$

Proof sketch:

- $p_{\mathbf{z}}(\mathbf{z}) = \prod_{i=1}^{D} p_{\mathbf{z}}(z_i \mid \mathbf{z}_{< i}) > 0$
- Want to show $p_{\mathbf{z}}(z_i \mid \mathbf{z}_{< i}) = \frac{\partial G_i}{\partial z_i}$ where G_i is the element-wise application of a function $\mathbf{G} : \mathbf{z} \to \boldsymbol{\epsilon}$
- Then as long as G has a lower-triangular Jacobian, then
 *p*_z(z) = det *J*_G(z) > 0 and by the inverse function theorem G is invertible and it's inverse is also differentiable.

This can be proved by defining each G_i as a one of the conditional CDFs.

Recall $p_{\epsilon}(\epsilon)$ is transformed to $p_{\mathbf{z}}(\mathbf{z})$ via $\mathbf{g}(\cdot)$, hoping to be close to the target $p_{\mathbf{z}}^*(\mathbf{z})$. One can also consider $p_{\mathbf{z}}^*(\mathbf{z})$ as the base, \mathbf{g}^{-1} as the flow and thus $p_{\epsilon}^*(\epsilon)$ as the distribution that the training data would follow if passed through it.

- Maximum Likelihood: Minimize KL $(p_{\mathbf{z}}^*(\mathbf{z}) \mid\mid p_{\mathbf{z}}(\mathbf{z}))$
- Variational Inference : Minimize KL $(p_{\mathbf{z}}(\mathbf{z}) ~||~ p_{\mathbf{z}}^*(\mathbf{z}))$

One can show that fitting the model $p_z(z)$ to the target $p_z^*(z)$ via $\operatorname{KL}(p_z^*(z) \mid\mid p_z(z))$ (ML) is equivalent to fitting $p_{\epsilon}^*(\epsilon)$ to the base $p_{\epsilon}(\epsilon)$ and vice versa.

Intuition

PECED P= (2) (2) Pé 171 12

Popular Flows

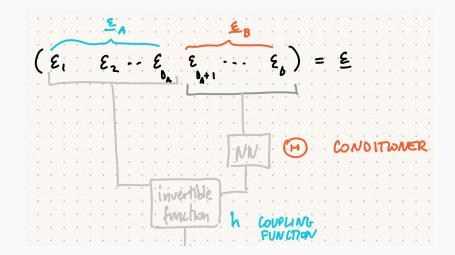
Most popular Normalizing Flows have triangular Jacobians.

- Autoregressive Flows: Feed previous coordinates into an arbitrarily complex neural network. The output is then fed, together with the currect coordinate into an invertible transformation.
- Coupling Flows: Coordinates are partitioned in two $\epsilon = (\epsilon_A, \epsilon_B)$. The second partition ϵ_B is fed into an arbitrarily complex function and then, the output is fed into an invertible function together with ϵ_A .

Autoregressive Flows

•	(Ei	•	•	Ę	2		•	2	3	•	•		· ·-	•	•	2	D	•)	•	-	2	•	* * *	• • •
	•	Ľ		-	T	•		1.		•		·	•	•	•			•	·				•	•		•	•
					1	•		Ċ	•		1			•	•			•			•		•		•		•
	•	•		·	1	•	•	•	•	•	1	•	•	•	•	•	Ċ		•	(E	Ň	DI	'n	'nλ	Æ	R	•
	•	·	ŕ	•	-	7	•	•	•	•	1	•	•			•	*	•	•	•	•					•	•
•	(-	Ŀ	N	N		•	•	•	•	1	•	•	•	•		ዯ	•	•	•	•	•	•	•	•	•	•
•	•		Ŀ	1.1		1	•	•	•	•		•	•	•	•		N	•	.1	FR	A	1S	FC	R	ME	R	
•	•	•	•	•	•	•	•	•	•	•	1	•	•	•	•		•		•		•		•		•	•	•
•		•		•				•							•	•	•		•	•	•				•		
	•			•	L.			•											•			•	•				
								[
					ŀ			Ŀ	L.																		
						in	Icr	Ţ,	0,e	•	Y																
					1	int	nc	h	Ņ		1																
					-					-																	
							\checkmark	1.																			

Coupling Flows



Thank you

References i