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Normalizing Flows at a Glance

• What are they? Normalizing Flows define expressive probability
distributions that we can sample and evaluate.

• How do we learn them? We specify transformations in advance and
learn their parameters.

• How? Transforming a simple density into a more complex one via a
chain of invertible transformations.

• How expressive are they? If the target distribution p∗z(z) satisfies
p∗z(z) > 0 for all z and P(z′i ≤ zi | z<i) are differentiable w.r.t.
(zi, z<i), then it can be represented by starting with an initial uniform
distribution, and the Jacobian of the transformation is lower triangular.

• What is the challenge? Finding transformations with a
lower-triangular Jacobian that do not restrict the expressive power of
the distribution.

2



Background



Variational Auto-Encoders Review

• Recall VAEs are used for latent posterior inference, parameter
estimation, and generative modelling.

• Optimize Evidence Lower Bound (ELBO) using SGD.

Lθ,ϕ(x) = Eqϕ [log pθ(x, z)− log qϕ(z | x)]

• This requires computing gradients with respect to ϕ

∇ϕLθ,ϕ(x) = ∇ϕEqϕ [·]

• To use Monte Carlo estimates we reparametrized qϕ to exchange ∇ϕ

and E. We call this the reparametrization trick.

ϵ ∼ p(ϵ) independent of ϕ

z = gϕ(ϵ,x) deterministic

}
=⇒ z ∼ qϕ(z | x)
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Reparametrization Trick: Diffeomorphism of a Simple Distribution

• Given a random variable ϵ with distribution pϵ(ϵ), a transformed
random variable z = g(ϵ) has distribution

pz(z) = pϵ(g
−1(z))|det Jg(g−1(z))|−1

= pϵ(g
−1(z))|det Jg−1(z)|

where the Jacobian is given by

Jg−1(z) =


∂g−1

1

∂ϵ1
· · · ∂g−1

D

∂ϵD
...

. . .
...

∂g−1
D

∂ϵ1
· · · ∂g−1

D

∂ϵD


• For this to work we need g to be a diffeomorphism: g−1 exists and both
g and g−1 are differentiable.
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Change of Variable, Change of Volume
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Normalizing Flows



Composition of Diffeomorphisms

• Normalizing Flows generalize the reparametrization trick so that the
resulting distribution qϕ(z | x) is more expressive.

• Suppose we haveK diffeomorphisms gk. These are composable and
their composition is a diffeomorphism.

• Define ϵk = gk(ϵk−1) for k = 1, . . . ,K with ϵ0 = ϵ and ϵK = z.

• Then their composition g = gK ◦ · · · ◦ g1 is invertible

z = (gK ◦ · · · ◦ g1)(ϵ) with ϵ = (g−1
1 ◦ · · ·g−1

K )(z)

• And differentiable

det JgK◦···◦g1
(ϵ) =

K∏
k=1

det Jgk
(ϵk−1)
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Normalizing Flows: Sampling and Evaluating

• Idea: By composing simple diffeomorphisms gk together, we can
transform a base distribution pϵ into a more complex one pz.

• Sampling:
• Sample from base distribution: ϵ(1), . . . , ϵ(N) i.i.d.∼ pϵ(ϵ)

• Feed through the flow: z(i) = g(ϵ(i)) for i = 1, . . . , N

• Evaluation: Using ϵk = g−1
k+1 ◦ · · · ◦ g

−1
K (z)

ln pz(z) = ln pϵ(g
−1(z)) +

K∑
k=1

ln
∣∣∣det Jg−1

k
(ϵk)

∣∣∣
• Sampling efficiency depends on ∼ pϵ and g(·).
• Evaluating efficiency depends on g−1(·), pϵ(·) and log-det-jacobian.
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What the area of Normalizing Flows is all about

• Depending on application one has to decide whether sampling or
evaluating efficiency is more important, as this is a trade-off.

• One aims to design Normalizing Flows optimizing sampling or
evaluating efficiency. This means choosing which of the operations
above are efficient.

• By choosing to model g−1 rather than g as normalizing flow, one
obtains an ”inverse” flow, with opposite properties (see MAF and IAF).
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Universality and Duality



Universality

By starting with a base distribution that is uniformly distributed in (0, 1)D,
we can represent any distribution satisfying:

• pz(z) > 0 for all z

• P(z′i ≤ zi | z<i) are differentiable wrt (zi, z<i)

Proof sketch:

• pz(z) =
∏D

i=1 pz(zi | z<i) > 0

• Want to show pz(zi | z<i) =
∂Gi

∂zi
where Gi is the element-wise

application of a functionG : z → ϵ

• Then as long asG has a lower-triangular Jacobian, then
pz(z) = det JG(z) > 0 and by the inverse function theoremG is
invertible and it’s inverse is also differentiable.

This can be proved by defining each Gi as a one of the conditional CDFs.
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KL divergence Duality

Recall pϵ(ϵ) is transformed to pz(z) via g(·), hoping to be close to the target
p∗z(z). One can also consider p∗z(z) as the base, g−1 as the flow and thus
p∗ϵ(ϵ) as the distribution that the training data would follow if passed through
it.

• Maximum Likelihood: Minimize KL(p∗z(z) || pz(z))
• Variational Inference : Minimize KL(pz(z) || p∗z(z))

One can show that fitting the model pz(z) to the target p∗z(z) via
KL(p∗z(z) || pz(z)) (ML) is equivalent to fitting p∗ϵ(ϵ) to the base pϵ(ϵ) and
vice versa.
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Intuition
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Popular Flows



Triangular Jacobians

Most popular Normalizing Flows have triangular Jacobians.

• Autoregressive Flows: Feed previous coordinates into an arbitrarily
complex neural network. The output is then fed, together with the
currect coordinate into an invertible transformation.

• Coupling Flows: Coordinates are partitioned in two ϵ = (ϵA, ϵB). The
second partition ϵB is fed into an arbitrarily complex function and then,
the output is fed into an invertible function together with ϵA.
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Autoregressive Flows
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Coupling Flows
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Thank you
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