
Variational Auto-Encoders
Mauro Camara Escudero

School of Mathematics, University of Bristol



Table of contents

1. Background

2. AEVB Objective Function

3. ELBO Optimization

4. Marginal Likelihood Estimation

5. Variational Auto-Encoders

6. Relationship between EM and VAE

1



Background



Latent Variable Models (LVMs)

Notation: x observed, z latent, θ parameter of interest.

Goals:

• Generative Modelling

pθ(x) =

∫
pθ(x, z)dz

• Posterior Inference
pθ(z | x) = pθ(x, z)

pθ(x)

• Parameter Estimation

θ∗ = argmax
θ

∏
x∈D

pθ(x)
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Space Diagram
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EM Algorithm for MLE

Initialize θ(0) and t = 0.

• Compute conditional distribution of latent given observations
{pθ(t)(z | x) : x ∈ D}

• Choose new parameter value θ(t+1) so that it maximises∑
x∈D

Ep
θ(t) (z|x) [log pθ(x, z)]

Problem: Breaks if pθ(t)(z | x) are intractable.
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Mean-Field VI for Parameter Posterior

Define factorized variational distribution

|Z|∏
i=1

qϕi
(zi) ≈

∏
z∈Z

pθ(z | x)

Minimize KL-divergence for each data point / variational parameter

min
ϕ

KL(qϕi
(z) ∥ pθ(z | x))

Problem: Breaks when Eqϕi
[·] are intractable and doesn’t scale to big data.
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At a Glance

• What it is used for: Inference and Generative Modelling in LVMs.

• How it works: Optimization of an unbiased estimator of the ELBO
(objective function) using SGD.

• What’s a VAE: AEVB where probability distributions in LVM are
parametrized by Neural Networks.
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AEVB Objective Function



Objective Function: ELBO Derivation

Introduce recognition model qϕ(z | x) with one parameter vector ϕ shared
across data points.

KL(qϕ(z | x) || pθ(z | x)) = Eqϕ [log qϕ(z | x)− log pθ(z | x)]

= −Eqϕ

[
log

(
pθ(x, z)

qϕ(z | x)

)]
+ log pθ(x)

First term on RHS is Evidence Lower BOund (ELBO) denoted Lθ,ϕ(x)∑
x∈D

log pθ(x) =
∑
x∈D

(KL(qϕ || pθ(z | x)) + Lθ,ϕ(x)) ≥
∑
x∈D

Lθ,ϕ(x)

Since KL(· || ·) ≥ 0.
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Objective Function: Two Birds, One Stone

max
θ,ϕ

Lθ,ϕ(x) =⇒


max
θ

∑
x∈D

log pθ(x) as log pθ(x) ≥ Lθ,ϕ(x)

min
ϕ

∑
x∈D

KL as log pθ(x)− KL = Lθ,ϕ(x)

Therefore maximizing ELBO leads to:

• pθ(x) (i.e. generative model) improving.

• qϕ becoming a better approximation.
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Objective Function: Alternative ELBO

Rewrite ELBO as expected reconstruction error regularized by penalizing
approximate posteriors qϕ(z | x) that are far from the prior pθ(z).

Lθ,ϕ(x) = log pθ(x)− KL(qϕ || pθ(z | x))
= Eqϕ [log (pθ(x | z)pθ(z))− log qϕ(z | x)]
= Eqϕ [log pθ(x | z)]︸ ︷︷ ︸

Expected Log-Likelihood

−KL(qϕ(z | x) || pθ(z))︸ ︷︷ ︸
Regularization Term

Notice: Optimize ELBO using stochastic gradient optimization requires
∇θ,ϕLθ,ϕ(x)
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ELBO Optimization



Intractability of Objective Function Gradients

ELBO gradient∇ϕEqϕ [·] difficult to approximate with Monte Carlo as we
cannot exchange gradient and expectation∇ϕEqϕ [·] ̸= Eqϕ [∇ϕ]

Lθ,ϕ(x) =


Eqϕ [log pθ(x, z)− log qϕ(z | x)]

Eqϕ [log pθ(x | z)]− KL(qϕ || pθ(z))

Can we write expectation with respect to a distribution independent of ϕ?

∇ϕEqϕ [·] ?
= Ep(ϵ) [∇ϕ]
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Reparametrization Trick

We know how to write a general MVN in terms of a Standard MVN

ϵ ∼ N (0, I) =⇒ z = µ+ Lϵ ∼ N (µ,LL⊤)

Thus expectations can be written as

EN (µ,LL⊤) [f(z)] = EN (0,I) [f(µ+ Lϵ)]

In general write z = gϕ(ϵ,x) as a deterministic and differentiable function
of x and ϵ, where p(ϵ) is independent of ϕ.

∇ϕEqϕ [f(z)] = Ep(ϵ) [∇ϕf(gϕ(ϵ,x))]
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SGC on Objective Function Unbiased Estimators

Obtain two unbiased estimators for ELBO based on ϵ(i) i.i.d.∼ p(ϵ).

L̃θ,ϕ(x) =



1

L

L∑
i=1

[
log pθ(x, gϕ(ϵ

(i),x))− log qϕ(gϕ(ϵ
(i),x) | x)

]

1

L

L∑
i=1

[
log pθ(x | gϕ(ϵ(i),x))

]
− KL(qϕ || pθ(z))︸ ︷︷ ︸

Often available
in closed form

SGD randomly samples a minibatch of dataM ⊆ D and uses mini-batch
gradients

1

|M|
∑
x∈M

∇θ,ϕL̃θ,ϕ(x)
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Marginal Likelihood Estimation



Estimating log pθ(D)

After training we can estimate the log marginal likelihood usingg
importance sampling.

log pθ(x) = log

∫
pθ(x, z)dz

= logEqϕ(z|x)

[
pθ(x, z)

qϕ(z | x)

]
≈ log

1

L

L∑
i=1

pθ(x, z
(i))

qϕ(z(i) | x)
z(i)

i.i.d.∼ qϕ(z | x)
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Variational Auto-Encoders



Parametrizing Distributions via Neural Networks

Suppose x is binary vector of Bernoulli trials. Then pθ(x | z) is
parametrized by a vector of probabilities p which can be constructed via an
MLP.

z p

W 1

b1

W 2

b2

The log-likelihood then becomes

log pθ(x | z) =
∑
j

xj log pj + (1− xj) log(1− pj)
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VAE = AEVB + NN

D
Z

x
qϕ(z | x)

pθ(x | z)

W1

b1

W2

b2

x ϕ

pθ(z)

W3

b3

W4

b4

z θ
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Relationship between EM and VAE



Variational EM

Recall the EM algorithm:

• Compute approximate posteriors {pθ(t)(z | x) : x ∈ D}
• Find optimal parameter θ(t+1) = argmax

θ

∑
x∈D

Ep
θ(t) (z|x) [log pθ(x, z)]

Consider ELBO as a functional of qϕ and a function of θ.

Lx(θ, qϕ) =


log pθ(x)− KL(qϕ || pθ(z | x)) (1)

Eqϕ [log pθ(x, z)]− Eqϕ [log qϕ] (2)

E-step: Maximize (1) wrt qϕ (KL is zero and the bound is tight).{
pθ(t)(z | x) = argmax

qϕ

Lx(θ
(t), qϕ) : x ∈ D

}
M-step: Maximize (2) wrt θ

θ(t+1) = argmax
θ

∑
x∈D

Lx(θ, pθ(t)(z | x))
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VAE = EM

In summary, EM algorithm and VAE optimize the same objective.

• When expectations are in closed-form, one should use EM, which uses
coordinate ascent.

• When expectations are intractable, VAE uses stochastic gradient ascent
on an unbiased estimator of the objective function.
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Thank you
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