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Background



Latent Variable Models (LVMs)

Notation: x observed, z latent, @ parameter of interest.

Goals:

* Generative Modelling

po(x) = /pg(x,z)dz

 Posterior Inference ( )

Po X,z
po(z|x)=—""+"
(z | x) Po(X)
e Parameter Estimation

0" = argmax H po(x)
x€D



Space Diagram



EM Algorithm for MLE

Initialize °) and ¢ = 0.

» Compute conditional distribution of latent given observations
{pew (z | x) : x € D}

» Choose new parameter value 0+ Y 5o that it maximises

Y Ep (el log po(x, 2)]
xeD

Problem: Breaks if py«) (z | x) are intractable.



Mean-Field VI for Parameter Posterior

Define factorized variational distribution

|Z]

H%’ (z:) ~ [ po(z | x)

zEZ

Minimize KL-divergence for each data point / variational parameter

ml;nKL(q,pi(Z) | po(z|x))

Problem: Breaks when E, . [-] are intractable and doesn’t scale to big data.



* What it is used for: Inference and Generative Modelling in LVMs.

* How it works: Optimization of an unbiased estimator of the ELBO
(objective function) using SGD.

* What’s a VAE: AEVB where probability distributions in LVM are
parametrized by Neural Networks.



AEVB Objective Function



Objective Function: ELBO Derivation

Introduce recognition model g4 (z | x) with one parameter vector ¢ shared
across data points.

KL(qg(z | x) || po(z | x)) = Eq,, [log g¢(z | x) — log pe(z | x)]
= —Eq, {log (pg(X,Z)>:| + log pe(x)

49 (2 | )



Objective Function: ELBO Derivation

Introduce recognition model g4 (z | x) with one parameter vector ¢ shared
across data points.

KL(q¢(2 | X) [| po(z | x)) = Eq, [log g¢(2 | x) —log pe(z | x)]

= —E,, {log ((M)} + log pe (%)

First term on RHS is Evidence Lower BOund (ELBO) denoted Lg ¢ (x)

> logpe(x) = > (KL(gp || po(z | X)) + Lo,(x)) > Y Log(x

xeD xeD xeD

Since KL(- || ©) >0



Objective Function: Two Birds, One Stone

max ZDlngo(X) as log pg(x) > Lg,¢(x)
xXE

mqgn Z KL as log pg(x) — KL = Ly ¢(x)

Therefore maximizing ELBO leads to:

* pe(x) (i.e. generative model) improving.

* q¢ becoming a better approximation.



Objective Function: Alternative ELBO

Rewrite ELBO as expected reconstruction error regularized by penalizing
approximate posteriors g4(z | x) that are far from the prior pg(z).

Ly.4(x) = logpe(x) — KL(ge || pe(z | x))
= Eq, [log (pe(x | 2)pe(z)) — log gy (z | x)]
= Ey, [logpe(x | 2)] — KL(q¢(z | x) || pe(2))

Expected Log-Likelihood Regularization Term

Notice: Optimize ELBO using stochastic gradient optimization requires
Veo,6Lo,¢(x)



ELBO Optimization




Intractability of Objective Function Gradients

ELBO gradient V4E,, [-] difficult to approximate with Monte Carlo as we
cannot exchange gradient and expectation V4[E,, [] # Eq, [V 4]

Ey, [log pe(x,2) — log q¢(z | x)]
Lo,p(x) =
Eq, [logpe(x | z)] — KL(gg || pe(2))

Can we write expectation with respect to a distribution independent of ¢?

V¢]Eq¢ []= Ep(ﬁ) [qu]

10



Reparametrization Trick

We know how to write a general MVN in terms of a Standard MVN
e~N(0,I) — z=p+Le~N(uLL")
Thus expectations can be written as

En(urnm) [f(2)] = Exox) [f (1 + Le)]

In general write z = g4 (€, x) as a deterministic and differentiable function
of x and €, where p(€) is independent of ¢.

Vg, [f(2)] = Epe) [V fgg(€,x))]
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SGC on Objective Function Unbiased Estimators

Obtain two unbiased estimators for ELBO based on ¢(?) "% p(e).

[logpe(x 9o (€, %)) — log gp(94 (e, x) | x)

S
M-

=il

Lo,g(x) = .
1 )
73" [logpo(x | g4(e®, )| ~ KL(gs || po(z))
=1 Often available
in closed form

SGD randomly samples a minibatch of data M C D and uses mini-batch

gradients

1 ~
m Z Vo,0L0,6(x)
xeM
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Marginal Likelihood Estimation




Estimating log pe(D)

After training we can estimate the log marginal likelihood usingg
importance sampling.

logo(x) =log [ po(x,2)dz
po(x,2) }

= 1ogEq¢(Z\x) L]d’(z | X)

(i) N
Po(X,Z ) Lid.
~1g*Z 9 2 % (2 | x)
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Variational Auto-Encoders




Parametrizing Distributions via Neural Networks

Suppose x is binary vector of Bernoulli trials. Then pg(x | z) is
parametrized by a vector of probabilities p which can be constructed via an
MLP.

W,

O

b, by

The log-likelihood then becomes

logpe(x | z) ZTJ logp; + (1 — z;)log(1l — p;)
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VAE = AEVB + NN
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Relationship between EM and VAE




Variational EM

Recall the EM algorithm:

+ Compute approximate posteriors {py (z | x) : x € D}
« Find optimal parameter 8“*1) = arg max Z Ep, ) (z1%) [log pe(x,z)]
xeD

Consider ELBO as a functional of g4 and a function of 6.
log pg(x) — KL(gg || pe(z | x)) M
'CX(qudJ) =
]E(1¢ [log pe(x,2)] — E% [log ‘M)} @)
E-step: Maximize (1) wrt g4 (KL is zero and the bound is tight).

{pe(t) (z | x) = arg maxﬁx(O(t),q¢) I XE D}

9%
M-step: Maximize (2) wrt 8

0"V = argmax Z Lx(0,pg) (z | X))

xeD
16



VAE = EM

In summary, EM algorithm and VAE optimize the same objective.

* When expectations are in closed-form, one should use EM, which uses
coordinate ascent.

» When expectations are intractable, VAE uses stochastic gradient ascent
on an unbiased estimator of the objective function.
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Thank you
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